Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 614
Filtrar
1.
Int J Environ Health Res ; : 1-4, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38572838

RESUMO

Colistin resistance is a global health concern, with antibiotics being the last treatment for Gram-negative bacteria infections. We aimed to identify colistin-resistant enterobacteria on environmental surfaces of a long-term care facility (LTCF) for the elderly in southern Brazil. Samples were collected and screened on MacConkey agar plus colistin, followed by API20E identification and PCR. Two isolates were founded and identified as Klebsiella pneumoniae and Providencia stuartii harboring mcr-1 gene with MICs > 128 µg mL-1 for colistin. This is the first isolation of microorganisms resistant to colistin in the environment of a LTCF for the elderly in south Brazil, urging monitoring programs to reduce environmental contamination by multiresistant microorganisms.

2.
Environ Monit Assess ; 196(5): 423, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38570374

RESUMO

Mobile herbicides have a high potential for groundwater contamination. An alternative to decrease the mobility of herbicides is to apply materials with high sorbent capacity to the soil, such as biochars. The objective of this research was to evaluate the effect of eucalyptus, rice hull, and native bamboo biochar amendments on sorption and desorption of hexazinone, metribuzin, and quinclorac in a tropical soil. The sorption-desorption was evaluated using the batch equilibrium method at five concentrations of hexazinone, metribuzin, and quinclorac. Soil was amended with eucalyptus, rice hull, and native bamboo biochar at a rate of 0 (control-unamended) and 1% (w w-1), corresponding to 0 and 12 t ha-1, respectively. The amount of sorbed herbicides in the unamended soil followed the decreasing order: quinclorac (65.9%) > metribuzin (21.4%) > hexazinone (16.0%). Native bamboo biochar provided the highest sorption compared to rice hull and eucalyptus biochar-amended soils for the three herbicides. The amount of desorbed herbicides in the unamended soil followed the decreasing order: metribuzin (18.35%) > hexazinone (15.9%) > quinclorac (15.1%). Addition of native bamboo biochar provided the lowest desorption among the biochar amendments for the three herbicides. In conclusion, the biochars differently affect the sorption and desorption of hexazinone, metribuzin, and quinclorac mobile herbicides in a tropical soil. The addition of eucalyptus, rice hull, and native bamboo biochars is a good alternative to increase the sorption of hexazinone, metribuzin, and quinclorac, thus, reducing mobility and availability of these herbicides to nontarget organisms in soil.


Assuntos
Eucalyptus , Herbicidas , Oryza , Quinolinas , Sasa , Poluentes do Solo , Triazinas , Carvão Vegetal , Solo , Adsorção , Monitoramento Ambiental , Herbicidas/análise , Poluentes do Solo/análise
3.
Sci Total Environ ; 927: 172250, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38599404

RESUMO

Understanding the geochemistry and contamination of rivers affected by anthropogenic activities is paramount to water resources management. The Asopos river basin in central Greece is facing environmental quality deterioration threats due to industrial, urban and agricultural activities. Here, the geochemistry of river sediments and adjacent soil in terms of major and trace elements (Al, Ca, Mg, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) and the geochemical composition of surface water in terms of major ions, trace elements and nutrients along the Asopos river basin were determined. In addition, this study characterized potential nitrate sources through the analysis of stable isotope composition of NO3- (δ15Ν-ΝΟ3- and δ18Ο-ΝΟ3-). Results indicated that specific chemical constituents including nutrients (NO2-, NH4+, PO43-) and major ions (Na+, Cl-) were highest in the urban, industrialized and downstream areas. On the other hand, nitrate (NO3-) concentration in river water (median 7.9 mg/L) showed a decreasing trend from the upstream agricultural sites to the urban area and even more in the downstream of the urban area sites. Ionic ratios (NO3-/Cl-) and δ15Ν-ΝΟ3- values (range from +10.2 ‰ to +15.7 ‰), complemented with a Bayesian isotope mixing model, clearly showed the influence of organic wastes from septic systems and industries operating in the urban area on river nitrate geochemistry. The interpretation of geochemical data of soil and river sediment samples demonstrated the strong influence of local geology on Cr, Fe, Mn and Ni content, with isolated samples showing elevated concentrations of Cd, Cu, Pb and Zn, mostly within the industrialized urban environment. The calculation of enrichment factors based on the national background concentrations provided limited insights into the origin of geogenic metals. Overall, this study highlighted the need for a more holistic approach to assess the impact of the geological background and anthropogenic activities on river waters and sediments.

4.
BMC Oral Health ; 24(1): 417, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580933

RESUMO

BACKGROUND: Many instruments used in dentistry are rotary, such as handpieces, water syringes, and ultrasonic scalers that produce aerosols. The spray created by these instruments can carry, in addition to water, droplets of saliva, blood, and microorganisms, which can pose a risk of infections for healthcare professionals and patients. Due to the COVID-19 pandemic, this gained attention. OBJECTIVE: The aim was to carry out a systematic review of the evidence of the scope of the aerosol produced by ultrasonic scaler in environmental contamination and the influence of the use of intraoral suction reduction devices. DESIGN: Scientific literature was searched until June 19, 2021 in 6 databases: Pubmed, EMBASE, Web of science, Scopus, Virtual Health Library and Cochrane Library, without restrictions on language or publication date. Studies that evaluated the range of the aerosol produced by ultrasonic scaler during scaling/prophylaxis and the control of environmental contamination generated by it with the use of low (LVE) and high (HVE) volume evacuation systems were included. RESULTS: Of the 1893 potentially relevant articles, 5 of which were randomized controlled trials (RCTs). The meta-analysis of 3 RCTs showed that, even at different distances from the patient's oral cavity, there was a significant increase in airborne bacteria in the dental environment with the use of ultrasonic scaler. In contrast, when meta-analysis compared the use of HVE with LVE, there was no significant difference (P = 0.40/CI -0.71[-2.37, 0.95]) for aerosol produced in the environment. CONCLUSIONS: There is an increase in the concentration of bioaerosol in the dental environment during the use of ultrasonic scaler in scaling/prophylaxis, reaching up to 2 m away from the patient's mouth and the use of LVE, HVE or a combination of different devices, can be effective in reducing air contamination in the dental environment, with no important difference between different types of suction devices.


Assuntos
Terapia por Ultrassom , Humanos , Ultrassom , Aerossóis e Gotículas Respiratórios , Aerossóis/efeitos adversos , Água , Raspagem Dentária
5.
MethodsX ; 12: 102638, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38445174

RESUMO

Density separation can isolate microplastics from environmental samples containing sediment. Typically, a solution added to sediment causes microplastics with lower densities to float. The solution of choice can influence the recovery of different particles since denser solutions can separate a greater range of microplastics. The equipment and procedural complexity further influence density separation protocols and microplastic recoveries. Zinc chloride (ZnCl2) is frequently used to isolate high-density polymers from environmental samples yet is rarely validated with simple, well-described protocols. A simple overflow method using ZnCl2 to isolate microplastics from sediment samples is described following a 3-step process: (1. Separation) ZnCl2 (1.7 g cm-3) solution is added to a sediment sample, agitated then settled; (2. Overflows) buoyant particles at the surface of the solution are overflowed twice; (3. Filtration) the overflowed solution is filtered. In a validation experiment with polyamide, rubber, polyvinyl chloride and polyethylene terephthalate/polyester, the mean recovery using this overflow method was 96 % ± 0.6 (standard error). This overflow density separation method proposes an accessible and reliable protocol to extract medium and high-density microplastics.•Microplastic separation with concentrated ZnCl2 solution•Simple overflow of buoyant particles•Reliable extraction of microplastics.

6.
Water Res ; 255: 121481, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38520776

RESUMO

Fecal-orally transmitted gastroenteritis viruses, particularly human noroviruses (HuNoVs), are a public health concern. Viral transmission risk through contaminated water results underexplored as they have remained largely unculturable until recently and the robust measuring of gastroenteritis viruses infectivity in a single cell line is challenging. This study primarily aimed to test the feasibility of the human intestinal enteroids (HIE) model to demonstrate the infectivity of multiple gastroenteritis viruses in wastewater. Initially, key factors affecting viral replication in HIE model were assessed, and results demonstrated that the reagent-assisted disruption of 3D HIE represents an efficient alternative to syringe pass-through, and the filtering of HuNoV stool suspensions could be avoided. Moreover, comparable replication yields of clinical strains of HuNoV genogroup I (GI), HuNoV GII, rotavirus (RV), astrovirus (HAstV), and adenoviruses (HAdV) were obtained in single and multiple co-infections. Then, the optimized HIE model was used to demonstrate the infectivity of multiple naturally occurring gastroenteritis viruses from wastewater. Thus, a total of 28 wastewater samples were subjected to (RT)-qPCR for each virus, with subsequent testing on HIE. Among these, 16 samples (57 %) showed replication of HuNoVs (n = 3), RV (n = 5), HAstV (n = 8), and/or HAdV (n = 5). Three samples showed HuNoV replication, and sequences assigned to HuNoV GI.3[P13] and HuNoV GII.4[P16] genotypes. Concurrent replication of multiple gastroenteritis viruses occurred in 4 wastewater samples. By comparing wastewater concentrate and HIE supernatant sequences, diverse HAstV and HAdV genotypes were identified in 4 samples. In summary, we successfully employed HIE to demonstrate the presence of multiple infectious human gastroenteritis viruses, including HuNoV, in naturally contaminated wastewater samples.

8.
Int J Parasitol ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38460722

RESUMO

Key parasite transmission parameters are difficult to obtain from elusive wild animals. For Echinococcus multilocularis, the causative agent of alveolar echinococcosis (AE), the red fox is responsible for most of the environmental contamination in Europe. The identification of individual spreaders of E. multilocularis environmental contamination is crucial to improving our understanding of the ecology of parasite transmission in areas of high endemicity and optimising the effectiveness of prevention and control measures in the field. Genetic faecal sampling appears to be a feasible method to gain information about the faecal deposition of individual animals. We conducted a 4 year faecal sampling study in a village that is highly endemic for E. multilocularis, to assess the feasibility of individual identification and sexing of foxes to describe individual infection patterns. Individual fox identification from faecal samples was performed by obtaining reliable genotypes from 14 microsatellites and one sex locus, coupled with the detection of E. multilocularis DNA, first using captive foxes and then by environmental sampling. From a collection of 386 fox stools collected between 2017 and 2020, tested for the presence of E. multilocularis DNA, 180 were selected and 124 samples were successfully genotyped (68.9%). In total, 45 unique individual foxes were identified and 26 associated with at least one sample which tested positive for E. multilocularis (Em(+)). Estimation of the population size showed the fox population to be between 29 and 34 individuals for a given year and 67 individuals over 4 years. One-third of infected individuals (9/26 Em(+) foxes) deposited 2/3 of the faeces which tested positive for E. multilocularis (36/60 Em(+) stools). Genetic investigation showed a significantly higher average number of multiple stools for females than males, suggesting that the two sexes potentially defecated unequally in the studied area. Three partially overlapping clusters of fox faeces were found, with one cluster concentrating 2/3 of the total E. multilocularis-positive faeces. Based on these findings, we estimated that 12.5 million E. multilocularis eggs were produced during the study period, emphasizing the high contamination level of the environment and the risk of exposure faced by the parasite hosts.

9.
Chemosphere ; 352: 141412, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336035

RESUMO

This study examined the multifaceted impacts of fluorene exposure on Tubifex tubifex, encompassing acute (survival analysis and behavioral responses) and subchronic exposure regimens (antioxidant enzyme response and histopathology), molecular docking studies, and generalized read-across analysis. Survival analysis revealed concentration-dependent increases in toxicity over varying time intervals, with LC50 values decreasing from 30.072 mg/L at 24 h to 12.365 mg/L at 96 h, emphasizing the time-sensitive and concentration-responsive nature of the stressor. Behavioral responses were both concentration- and duration-dependent. While Erratic Movement and Clumping Tendency exhibited earlier responses (within 24 h) at lower concentrations, the wrinkling effect and mucus secretion) exhibited delayed onset, suggesting intricate regulatory mechanisms underlying adaptability to environmental challenges; moreover, the wrinkling effect was consistently induced at higher concentrations, indicating greater sensitivity to the toxic effects of fluorene. With sublethal environmentally relevant concentrations-1.24 mg/l and 2.47 mg/L i.e., 10% and 20% 96 h, respectively-the antioxidant enzyme response (i.e., upregulation of SOD, CAT, and GST) with increasing fluorene concentration, revealing a nonlinear, hormetic response, suggested adaptive protection at lower doses but inhibition at higher concentrations. Histopathological examination indicated that higher fluorene concentrations caused cellular proliferation, inflammation, and severe tissue damage in the digestive tract and body wall. Molecular docking studies demonstrated robust interactions between fluorene and major stress biomarker enzymes, disrupting their functions and inducing oxidative stress. Interactions with cytochrome c oxidase suggested interference with cellular energy production. Generalized Read-Across (GenRA) analysis unveiled shared toxicity mechanisms among fluorene and its analogs, involving the formation of reactive epoxides and the influence of cytochrome P450 enzymes. The diverse functional groups of these analogs, particularly chlorine-containing compounds, were implicated in toxicity through lipid peroxidation and membrane damage. Adverse outcome pathways and broader consequences for aquatic ecosystem health are discussed.


Assuntos
Oligoquetos , Poluentes Químicos da Água , Animais , Antioxidantes/metabolismo , Ecossistema , Simulação de Acoplamento Molecular , Biomarcadores/metabolismo , Fluorenos/toxicidade , Fluorenos/metabolismo , Poluentes Químicos da Água/metabolismo
10.
Appl Environ Microbiol ; 90(3): e0220123, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38412030

RESUMO

Coxiella burnetii infection was monitored during seven kidding seasons (2017-2023) in a dairy goat herd that after an outbreak of Q fever abortions was vaccinated with an inactivated phase I vaccine. Due to the high infection rate just after the outbreak, only the replacement stock was vaccinated during the first three kidding seasons, and when the average herd immunity had decreased (fourth kidding season onwards), the whole herd was vaccinated. Vaginal swabs, feces, and milk were analyzed by PCR to monitor infection, and dust and aerosols were analyzed to measure C. burnetii environmental contamination. One year after the onset of the outbreak, a significant reduction in C. burnetii shedding loads was observed, but the percentage of shedding animals remained high until the third kidding season. By the seventh kidding season, no shedders were detected. The bacterial load excreted was significantly lower in vaccinated compared with unvaccinated animals, and in yearlings compared with multiparous. C. burnetii was detected by PCR in aerosols collected inside the animal premises throughout the study period except in the last season; whereas, aerosols collected outdoors tested negative in the last three kidding seasons. Viable C. burnetii was detectable in environmental dust collected inside the barn until the third kidding season following the outbreak. These results indicate that after an outbreak of Q fever, the risk of infection for humans and susceptible animals can remain high for at least three kidding seasons when the number of C. burnetii animal shedders is still high, even when bacterial excretion is low. IMPORTANCE: Q fever is a zoonosis distributed worldwide. Ruminants are the main reservoir, and infection can cause high rates of abortion. After entering a farm, Coxiella burnetii infection can persist in the animal population over several lambing/kidding periods. Once infection is established in a herd, vaccination with the inactivated Phase I vaccine significantly reduces bacterial shedding, but although at low levels, excretion may continue to occur for several lambing/kidding seasons. The time that C. burnetii remains viable in the farm environment after an outbreak of Q fever determines the period when risk of infection is high for the people in close contact. This work showed that this period extends at least three kidding seasons after the outbreak. These results provided valuable information on the epidemiology of C. burnetii infection in goat herds and may help to develop guidelines for controlling the disease and reducing infection risk for susceptible people and animals.


Assuntos
Coxiella burnetii , Doenças das Cabras , Febre Q , Vacinas , Gravidez , Feminino , Humanos , Animais , Ovinos , Febre Q/epidemiologia , Febre Q/prevenção & controle , Febre Q/veterinária , Estações do Ano , Cabras , Surtos de Doenças/veterinária , Vacinação/veterinária , Aerossóis , Poeira , Doenças das Cabras/epidemiologia , Doenças das Cabras/prevenção & controle , Doenças das Cabras/microbiologia
11.
Bull Environ Contam Toxicol ; 112(3): 43, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409431

RESUMO

In aquatic ecosystem, metal pollution is an important environmental hazard. Mussels as a bioindicator species are often used for assessment the presence of potentially toxic metals. Hence, the present study aimed to assess the effect of seasonal variations on some heavy metals (Cd, Cr, Pb, As, Zn and Cu) accumulation in water and Dreissena polymorpha from lake habitat. Our result indicated that Zn accumulated at a very high level in the zebra mussels while As accumulated at a high level in water samples. Seasonal variations significantly affected Cu concentration in the water samples (P < 0.05) while Cr concentration in the mussel samples was significantly affected by seasonal variations (P < 0.05). According to the water analysis, mean concentrations of metals are below the maximum limits established by the World Health Organization and USEPA, except As. Overall, our data emphasize anthropogenic pollution in the Turkish aquatic environment and confirm the use of D. polymorpha as a prospective biomonitor for metal polluted sites'.


Assuntos
Bivalves , Dreissena , Metais Pesados , Poluentes Químicos da Água , Animais , Espécies Sentinelas , Lagos , Água/análise , Ecossistema , Estações do Ano , Estudos Prospectivos , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Metais Pesados/análise
12.
Cureus ; 16(1): e52055, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38344582

RESUMO

Introduction Transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) often occurs among family members. Elucidating where viable SARS-CoV-2 virions, and not just residual viral RNA, are present in the house is necessary to prevent the further spread of the coronavirus disease 2019 (COVID-19). We aimed to evaluate the environmental surface contamination levels of both SARS-CoV-2 RNA and viable viruses in the homes of housebound patients with COVID-19. Methods Environmental samples were collected from the households of three patients in April and July 2022 when the number of new COVID-19 cases in Japan was reported to be approximately 50,000 and 200,000 cases per day, respectively. For each case, samples were obtained from 19-26 household sites for seven consecutive days. SARS-CoV-2 RNA was examined in 455 samples through reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and RT-qPCR-positive samples were subjected to plaque assay to detect viable viruses. Results Among the 455 samples, 63 (13.8%) that were collected from patients' pillows and comforters, doorknobs, chairs, and refrigerators tested positive by RT-qPCR. The maximum detection rate of SARS-CoV-2 RNA-positive samples in each case ranged from 20.0% to 57.7% on days 1 to 3. The detection rate gradually decreased to 0-5.3% as the days elapsed. Although all RT-qPCR-positive samples were examined, no viable viruses were detected in these samples. Conclusions Although environmental contamination of SARS-CoV-2 RNA was observed in the homes of housebound patients with COVID-19, no viable viruses were isolated. This suggests that the indirect transmission risk from fomites was low.

14.
Environ Sci Pollut Res Int ; 31(11): 17472-17480, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342836

RESUMO

China, one of the two dechlorane plus (DP) producers, might have become a major area of DP pollution. The environmental contamination status of DP in sediments across the whole of China has not yet been studied. In the current study, the pollution levels, spatial distribution, and compositions of DP were investigated comprehensively in surface sediments from 173 black-odorous urban rivers across China for the first time. Total DP concentrations varied from not-detected to 39.71 ng/g dw, with an average concentration of 3.20 ± 4.74 ng/g dw, which was polluted by local emission sources and presented significant differences among different sampling cities. Among the seven administrative regions of China, DP concentrations were the highest in South China and showed a decreasing trend from southeastern coastal areas to northwest inland regions. Spearman's correlation analysis suggested that the gross industrial output, gross domestic product, and daily wastewater treatment capacity were not the principal factors controlling the spatial distribution of DP. The fanti values (the concentration ratios of anti-DP to the sum of anti-DP and syn-DP) varied from 0.19 to 0.88, with those in most sediments falling in the range of DP technical product (0.60 ~ 0.80), suggesting no apparent stereoselective enrichment occurred. Moreover, the anti-Cl11-DP was detected in sediments (n.d. ~ 0.40 ng/g dw), which showed significantly and insignificantly positive correlation with the anti-DP levels and fanti, respectively, implying it might mainly originate from the byproduct of DP technical product rather than the dechlorination of anti-DP.


Assuntos
Retardadores de Chama , Hidrocarbonetos Clorados , Compostos Policíclicos , Poluentes Químicos da Água , Sedimentos Geológicos , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Retardadores de Chama/análise , Hidrocarbonetos Clorados/análise , Compostos Policíclicos/análise , Rios , China
15.
Ecotoxicol Environ Saf ; 272: 116086, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38354433

RESUMO

Anthropogenic influences such as plastic pollution are causing serious environmental problems. While effects of microplastics on marine organisms are well studied, less is known about effects of plastic particles on terrestrial organisms such as plants. We investigated the effects of microplastic particles on different growth and metabolic traits of savoy cabbage (Brassica oleracea var. sabauda). Sections of seedlings exposed to polystyrene particles were analysed by coherent Raman scattering microscopy. These analyses revealed an uptake of particles in a size range of 0.5 µm to 2.0 µm into cells of the hypocotyl. Furthermore, plants were grown in substrate amended with polyethylene and polystyrene particles of different sizes (s1: 200-500 µm; s2: 100-200 µm; s3: 20-100 µm; s4: < 100 µm, with most particles < 20 µm; s5: < 20 µm) and in different concentrations (c1 = 0.1%, c2 = 0.01%, c3 = 0.001%). After several weeks, shoot and root biomass were harvested. Leaves were analysed for their carbon to nitrogen ratio, while amino acid and glucosinolate composition were measured using high performance liquid chromatography. Plastic type, particle size and concentration showed distinct effects on certain plant traits. Shoot biomass was interactively influenced by size and concentration of polyethylene, while root biomass was not modified by any of the plastic exposure treatments. Likewise, the composition and total concentrations of leaf amino acids were not affected, but the leucine concentration was significantly increased in several of the plastic-exposed plants. Glucosinolates were also slightly altered, depending on the particle size. Some of the observed effects may be independent of plastic uptake, as larger particles were not taken up but still could affect plant traits. For example, in the rhizosphere plastic particles may increase the water holding capacity of the soil, impacting some of the plant traits. In summary, this study shows how important the plastic type, particle size and concentration are for the uptake of microplastics and their effects on plant traits, which may have important implications for crops, but also for ecosystems.


Assuntos
Brassica , Microplásticos , Microplásticos/toxicidade , Plásticos/análise , Ecossistema , Poliestirenos/análise , Brassica/metabolismo , Plantas/metabolismo , Polietileno/toxicidade , Polietileno/análise
16.
Chemosphere ; 351: 141146, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38211792

RESUMO

Recent ecotoxicological studies have indicated mercury (Hg) contamination in aquatic ecosystems in the Amazon Basin. Although Hg contamination can be associated with small-scale gold mining, the soils of the Amazon region have naturally high Hg concentrations, and can be transported to aquatic ecosystems via deforestation and mining activities. Biomagnification of Hg can pose risks to the local human population; therefore, its concentration in fish tissues must be monitored consistently. Fast and sensitive Hg determination is required for continuously monitoring ecosystems impacted by mineral exploration. The direct mercury analyzer (DMA-80) is widely used for determining total Hg levels in tissue samples; it is fast and cost-effective, without requiring sample preparation. Here, we determined the sensitivity and specificity of Hg detection accomplished using DMA-80, and whether these results are reliable compared to those obtained using Inductively Coupled Plasma Mass Spectrometer (ICP-MS), which is the gold standard. We obtained 106 paired dried samples of muscle tissue from fish species occupying different trophic levels in the Lower Amazon region, and analyzed them using both equipment (DMA-80 and ICP-MS). The results obtained using DMA-80 had an overall Hg mean of 1.90 ± 0.18 mg/kg which was higher (p < 0.05) than the mean of those obtained using ICP-MS (1.55 ± 0.13 mg/kg). Linear regression analysis comparing the Hg levels obtained using both devices was within the 95% prediction interval, and a high coefficient of correlation showed agreement between the devices (r = 0.979; 0.069 to 0.986, 95% CI). Bland-Altman analysis showed that DMA-80 had a positive bias of 6.5% in relation to ICP-MS, which is more evident in samples with high Hg concentrations. DMA-80 was efficient in determining whether the Hg levels exceeded the maximum allowed levels required by the European Union, USA, and Brazil, showing a specificity and sensitivity of above 95%.


Assuntos
Mercúrio , Animais , Humanos , Mercúrio/análise , Ecossistema , Sensibilidade e Especificidade , Peixes , Espectrometria de Massas , Monitoramento Ambiental
17.
J Environ Manage ; 351: 119996, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181684

RESUMO

Acid mine drainage (AMD) emanating from waste rock piles (WRPs) at mining sites is a global concern. Successful rehabilitation of these sites requires effective characterization and monitoring of the waste rock during AMD generation/release. Traditional approaches involve ex-situ analysis of waste rock and porewater samples collected via corings and monitoring wells; however, this is highly disruptive, costly, and provides sparsely distributed point information across enormous volumes typical of WRPs. Geoelectrical techniques are a promising approach for non-invasive continuous imaging; however, their application has been limited to 'one-off' imaging with few studies on monitoring waste rock evolution. The objective of this study is to assess the geoelectrical signatures of changing waste rock during AMD generation/release. Field waste rock samples were extracted from three mine WRPs and first characterized for mineralogy and acid generation potential. Kinetic tests were then performed on each sample using leaching columns and humidity cells, with simultaneous measurements of effluent quality and complex electrical conductivity (real and imaginary components measure conduction and polarization, respectively). Results show that real conductivity was highly sensitive to changes associated with AMD leachate quality (e.g., 28,800 to 68 mg/L acidity) and surface of the waste material. Imaginary conductivity measurements identified changes in the waste mineralogy over time, though these signatures were not very distinct, which is likely due to low sulfide contents and limited oxidation (e.g., 0.59 wt% sulfide and 33% air saturation). This study improves our understanding of geoelectrical signatures associated with real waste rock, demonstrating the potential application of the electrical resistivity tomography and induced polarization techniques for mine waste investigations.


Assuntos
Mineração , Sulfetos
18.
Toxics ; 12(1)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38251041

RESUMO

This study delved into the impact of open biomass burning on the distribution of pesticide and polycyclic aromatic hydrocarbon (PAH) residues across soil, rice straw, total suspended particulates (TSP), particulate matter with aerodynamic diameter ≤ 10 µm (PM10), and aerosols. A combination of herbicides atrazine (ATZ) and diuron (DIU), fungicide carbendazim (CBD), and insecticide chlorpyriphos (CPF) was applied to biomass before burning. Post-burning, the primary soil pesticide shifted from propyzamide (67.6%) to chlorpyriphos (94.8%). Raw straw biomass retained residues from all pesticide groups, with chlorpyriphos notably dominating (79.7%). Ash residue analysis unveiled significant alterations, with elevated concentrations of chlorpyriphos and terbuthylazine, alongside the emergence of atrazine-desethyl and triadimenol. Pre-burning TSP analysis identified 15 pesticides, with linuron as the primary compound (51.8%). Post-burning, all 21 pesticides were detected, showing significant increases in metobromuron, atrazine-desethyl, and cyanazine concentrations. PM10 composition mirrored TSP but exhibited additional compounds and heightened concentrations, particularly for atrazine, linuron, and cyanazine. Aerosol analysis post-burning indicated a substantial 39.2-fold increase in atrazine concentration, accompanied by the presence of sebuthylazine, formothion, and propyzamide. Carcinogenic PAHs exhibited noteworthy post-burning increases, contributing around 90.1 and 86.9% of all detected PAHs in TSP and PM10, respectively. These insights advance understanding of pesticide dynamics in burning processes, crucial for implementing sustainable agricultural practices and safeguarding environmental and human health.

19.
Biodegradation ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38289541

RESUMO

Microplastics pose significant challenges to ecosystems and organisms. They can be ingested by marine and terrestrial species, leading to potential health risks and ecological disruptions. This study aims to address the urgent need for effective remediation strategies by focusing on the biodegradation of microplastics, specifically polyvinyl chloride (PVC) derivatives, using the bacterial strain Bacillus albus. The study provides a comprehensive background on the accumulation of noxious substances in the environment and the importance of harnessing biodegradation as an eco-friendly method for pollutant elimination. The specific objective is to investigate the enzymatic capabilities of Bacillus albus, particularly the alpha/beta hydrolases (ABH), in degrading microplastics. To achieve this, in-silico studies were conducted, including analysis of the ABH protein sequence and its interaction with potential inhibitors targeting PVC derivatives. Docking scores of - 7.2 kcal/mol were obtained to evaluate the efficacy of the interactions. The study demonstrates the promising bioremediation prospects of Bacillus albus for microplastics, highlighting its potential as a key player in addressing microplastic pollution. The findings underscore the urgent need for further experimental validation and practical implementation of Bacillus albus in environmental remediation strategies.

20.
Sci Total Environ ; 914: 169960, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38211850

RESUMO

Microplastics are a global ecological concern due to their potential risk to wildlife and human health. Animals ingest microplastics, which can enter the trophic chain and ultimately impact human well-being. The ingestion of microplastics can cause physical and chemical damage to the animals' digestive systems, affecting their health. To estimate the risk to ecosystems and human health, it is crucial to understand the accumulation and localization of ingested microplastics within the cells and tissues of living organisms. However, analyzing this issue is challenging due to the risk of sample contamination, given the ubiquity of microplastics. Here, an analytical approach is employed to confirm the internalization of microplastics in cryogenic cross-sections of mussel tissue. Using 3D Raman confocal microscopy in combination with chemometrics, microplastics measuring 1 µm in size were detected. The results were further validated using optical and fluorescence microscopy. The findings revealed evidence of microplastics being internalized in the digestive epithelial tissues of exposed mussels (Mytilus galloprovincialis), specifically within the digestive cells forming digestive alveoli. This study highlights the need to investigate the internalization of microplastics in organisms like mussels, as it helps us understand the potential risks they pose to aquatic biota and ultimately to human health. By employing advanced imaging techniques, challenges associated with sample contamination can be overcome and valuable insights into the impact of microplastics on marine ecosystems and human consumers are provided.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Humanos , Microplásticos/toxicidade , Plásticos/toxicidade , Ecossistema , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Mytilus/química , Monitoramento Ambiental/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...